Nearest-neighbour classifiers in natural scene analysis

نویسندگان

  • Sameer Singh
  • John F. Haddon
  • Markos Markou
چکیده

It is now well-established that k nearest-neighbour classi"ers o!er a quick and reliable method of data classi"cation. In this paper we extend the basic de"nition of the standard k nearest-neighbour algorithm to include the ability to resolve con#icts when the highest number of nearest neighbours are found for more than one training class (model-1). We also propose model-2 of nearest-neighbour algorithm that is based on "nding the nearest average distance rather than nearest maximum number of neighbours. These new models are explored using image understanding data. The models are evaluated on pattern recognition accuracy for correctly recognising image texture data of "ve natural classes: grass, trees, sky, river re#ecting sky and river re#ecting trees. On noise contaminated test data, the new nearest neighbour models show very promising results for further studies. We evaluate their performance with increasing values of neighbours (k) and discuss their future in scene analysis research. CrownCopyright 2001 Published by Elsevier Science Ltd. on behalf of Pattern Recognition Society. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural Language Text Classification and Filtering with Trigrams and Evolutionary Nearest Neighbour Classifiers

N grams o er fast language independent multi-class text categorization. Text is reduced in a single pass to ngram vectors. These are assigned to one of several classes by a) nearest neighbour (KNN) and b) genetic algorithm operating on weights in a nearest neighbour classi er. 91% accuracy is found on binary classi cation on short multi-author technical English documents. This falls if more cat...

متن کامل

Extensions of the k Nearest Neighbour Methods for Classification Problems

The k Nearest Neighbour (kNN) method is a widely used technique which has found several applications in clustering and classification. In this paper, we focus on classification problems and we propose modifications of the nearest neighbour method that exploit information from the structure of a dataset. The results of our experiments using datasets from the UCI repository demonstrate that the c...

متن کامل

Ensembles of nearest neighbour classifiers and serial analysis of gene expression

In this paper, we represent experimental results obtained with ensembles of nearest neighbour classifiers on the binary classification problem of cancer classification using serial analysis of gene expression (SAGE) data. Nearest neighbours are selected as classifiers since they were rarely employed in building ensembles because their predictions are stable to small perturbations of data, which...

متن کامل

Ensembles of Nearest Neighbours for Cancer Classification Using Gene Expression Data

It is known that an ensemble of classifiers can outperform a single best classifier if classifiers in the ensemble are sufficiently diverse (i.e., their errors are as much uncorrelated as possible) and accurate. We study ensembles of nearest neighbours for cancer classification based on gene expression data. Such ensembles have been rarely used, because the traditional ensemble methods such as ...

متن کامل

Spam Classification Using Nearest Neighbour Techniques

Spam mail classification and filtering is a commonly investigated problem, yet there has been little research into the application of nearest neighbour classifiers in this field. This paper examines the possibility of using a nearest neighbour algorithm for simple, word based spam mail classification. This approach is compared to a neural network, and decision-tree along with results published ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2001